Structure Reports

Online
ISSN 1600-5368

Bis(dimethylammonium) tetrachloridodimethylstannate(IV)

Tidiane Diop, ${ }^{\text {a* }}$ Libasse Diop ${ }^{\text {a }}$ and Francois Michaud ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratoire de Chimie, Universite Chekh Anta Diop, Dakar, Senegal, and ${ }^{\mathbf{b}}$ Service commun d'analyse par diffraction des rayons X, Universite de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, CS 93837, F-29238 BREST Cedex 3, France
Correspondence e-mail: cakdiop@ucad.sn
Received 1 March 2011; accepted 11 April 2011
Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$; R factor $=0.023 ; w R$ factor $=0.060$; data-to-parameter ratio $=29.2$.

Regular crystals of the title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{2}$ $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{4}\right]$, were obtained by reacting $\mathrm{SnMe}_{2} \mathrm{Cl}_{2}$ with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH} \cdot \mathrm{HCl}$ in ethanol in a 1:1 ratio. The Sn atom lies on a center of symmetry and is six-coordinated. It has a distorted octahedral $\mathrm{SnC}_{2} \mathrm{Cl}_{4}$ environment with the Cl atoms in cis positions. The Cl atoms are connected to dimethylammonium cations through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming an infinite chain extending parallel to [010].

Related literature

For background to organotin(IV) chemistry, see: Gielen et al. (1996); Evans \& Karpel (1985); Crowe et al. (1994); DiasseSarr et al. (1997); Diop et al. (2002, 2003). For related compounds, see: Valle et al. (1985); Casas et al. (1996); Diop et al. (2011).

Experimental

Crystal data

$\left.\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{SnCH}_{3}\right)_{2} \mathrm{Cl}_{4}\right]$	$c=8.4555(12) \AA$
$M_{r}=382.75$	$\alpha=109.625(14)^{\circ}$
Triclinic, $P \overline{1}$	$\beta=98.345(12)^{\circ}$
$a=6.6162(9) \AA$	$\gamma=92.812(12)^{\circ} \AA^{\circ}$
$b=7.3703(11) \AA$	$V=382.13(9) \AA^{3}$

$Z=1$

$T=297 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=2.34 \mathrm{~mm}^{-1}$

Data collection
Oxford Diffraction Xcalibur Sapphire2 diffractometer
Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2009)
$T_{\text {min }}=0.352, T_{\text {max }}=0.652$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 64$ parameters
$w R\left(F^{2}\right)=0.060$
$S=1.06$
1871 reflections
$0.5 \times 0.3 \times 0.2 \mathrm{~mm}$

3329 measured reflections 1871 independent reflections 1839 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 E \cdots \mathrm{Cl} 1$	0.9	2.31	$3.201(2)$	169
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.9	2.37	$3.229(2)$	160

Symmetry code: (i) $x, y+1, z$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2163).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Casas, J., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. \& Varela, J. M. (1996). J. Organomet. Chem. 517, 165-172.

Crowe, A. J. (1994). Metal Complexes in Cancer Chemotherapy, edited by S. P. Friccker. London: Chapman and Hall.
Diasse-Sarr, A., Diop, L., Mahon, M. F. \& Molloy, K. C. (1997). Main Group Met. Chem. 20, 223-229.
Diop, T., Diop, L., Molloy, K. C. K. \& Kocioc-Köhn, G. (2011). Acta Cryst. E67, m203-m204.
Diop, C. A. K., Diop, L. \& Toscano, A. R. (2002). Main Group Met. Chem. 25, 327-328.
Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. \& Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.
Evans, C. J. \& Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gielen, M. (1996). Coord. Chem. Rev. 151, 41-51.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Valle, G., Plazzogna, G. \& Ettore, R. (1985). J. Chem. Soc. Dalton Trans. pp. 1271-1274.

supplementary materials

Acta Cryst. (2011). E67, m696 [doi:10.1107/S1600536811013584]

Bis(dimethylammonium) tetrachloridodimethylstannate(IV)

T. Diop, L. Diop and F. Michaud

Comment

As some compounds belonging to organotin family have been screened and found to be very more active than cis platin towards some kinds of cancer, many groups have been involved in the seek of new organotin compounds (Gielen, 1996; Crowe, 1994). In another hand the various applications of compounds of this family have been outlined (Evans \& Karpel, 1985). In our group we have yet published some papers in this field (Diop et al. 2002; Diop et al. 2003; Diasse-Sarr et al. 1997). In this paper we have initiated the study of the interactions between $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH} . \mathrm{Cl}$ and $\mathrm{SnMe}_{2} \mathrm{Cl}_{2}$ which has yielded $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}\right]_{2}\left[\mathrm{SnMe}_{2} \mathrm{Cl}_{4}{ }^{2-}\right]$, X-ray structure determination of which has been carried out.

In the $\left[\mathrm{SnMe}_{2} \mathrm{Cl}_{4}\right]^{2-}$ anion the tin atom, which lies on a center of symmetry, is coordinated to the two methyl groups and four Cl atoms (Fig 1) in an octahedral geometry with trans methyl groups.

The $\mathrm{Sn}-\mathrm{C}$ bond distances $(2.116 \AA$) are practically equal to those found in other octahedral dimethyltin(IV) diaquo-dichloro complexes $\mathrm{SnMe}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{2}(2.112 \AA)$ reported by Valle et al. (1985) and longer than those in [Hthiamine] $\left[\mathrm{SnMe}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}(2.092 \AA$ and $2.084 \AA)$ reported by Casas et al. (1996).

The $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ and $\mathrm{Cl}-\mathrm{Sn}-\mathrm{CH} 3$ angles being very near to 90° indicates an almost perfect octahedron. The interactions between $\left[\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}{ }^{+}\right]$and anion are hydrogen bonds type. The $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles of the cation is close to 109°, in agreement with the expected sp^{3} hybridation. The interactions between $\left[\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}{ }^{+}\right]$and anion imply hydrogen bonds.

Experimental

The title compound has been obtained as white crystalline solid by reacting dimethylammonium chloride (Merck) with dimethyltin dichloride (Aldrich) in ethanol ($1 / 1$ ratio, $\mathrm{mp}: 190^{\circ}$). After a slow solvent evaporation colourless crystals suitable for X-ray work were obtained. All the chemicals were used without any further purification.

Figures

Fig. 1. Molecular packing around one anion implying hydrogen bonds (dashed lines) with the atom numbering used and 50% probability displacement elipsoids. Symmetry operations : ['] $-x,-y,-z ;["] x, y+1, z,[" ']-x,-y,-z$.

supplementary materials

Bis(dimethylammonium) tetrachloridodimethylstannate(IV)

Crystal data

$\left.\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}\right)_{2}\left[\mathrm{SnCH}_{3}\right)_{2} \mathrm{Cl}_{4}\right]$
$M_{r}=382.75$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.6162$ (9) \AA
$b=7.3703$ (11) \AA
$c=8.4555(12) \AA$
$\alpha=109.625(14)^{\circ}$
$\beta=98.345$ (12 $^{\circ}$
$\gamma=92.812(12)^{\circ}$
$V=382.13(9) \AA^{3}$
$Z=1$
$F(000)=190$
$D_{\mathrm{x}}=1.663 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3675 reflections
$\theta=2.9-31.3^{\circ}$
$\mu=2.34 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Fragment of rounded block, colourless
$0.5 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Sapphire2
diffractometer
Radiation source: sealed X-ray tube
graphite
Detector resolution: 8.3622 pixels mm^{-1}
1871 independent reflections
1839 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=4.1^{\circ}$
4 stepped ω-scans over 115 deg. with kappa -79 deg. (chi -58.3 deg.), phi $0,90,180,270$ deg. step 1 deg., exposure time 45 s detector distance 50 mm detector angle 30 deg.
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2009)
$T_{\text {min }}=0.352, T_{\text {max }}=0.652$
3329 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.060$
$S=1.06$
1871 reflections
64 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0362 P)^{2}+0.2233 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.56 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.2689(4)$	$0.3818(4)$	$0.5967(3)$	$0.0404(5)$
H1A	0.2902	0.2502	0.5847	0.061^{*}
H1B	0.1366	0.3849	0.5343	0.061^{*}
H1C	0.275	0.4566	0.715	0.061^{*}
C11	$0.25609(10)$	$0.40746(9)$	$0.20155(7)$	$0.04289(14)$
Cl2	$0.64584(8)$	$0.16207(8)$	$0.39707(7)$	$0.03603(12)$
Sn1	0.5	0.5	0.5	$0.02900(8)$
C2	$0.2993(5)$	$0.8184(6)$	$0.0309(4)$	$0.0621(8)$
H2A	0.4272	0.764	0.0166	0.093^{*}
H2B	0.3073	0.9423	0.0167	0.093^{*}
H2C	0.1905	0.7333	-0.0527	0.093^{*}
C3	$0.0570(4)$	$0.9131(4)$	$0.2302(4)$	$0.0479(6)$
H3A	0.0331	0.9174	0.3406	0.072^{*}
H3B	-0.0493	0.8274	0.1442	0.072^{*}
H3C	0.0563	1.0407	0.2239	0.072^{*}
N1	$0.2581(3)$	$0.8422(3)$	$0.2023(3)$	$0.0381(4)$
H1D	0.3576	0.9263	0.28	0.046^{*}
H1E	0.2622	0.7276	0.2183	0.046^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0393(11)$	$0.0380(11)$	$0.0450(12)$	$-0.0035(9)$	$0.0167(10)$	$0.0128(10)$
Cl1	$0.0486(3)$	$0.0369(3)$	$0.0360(3)$	$-0.0001(2)$	$-0.0059(2)$	$0.0094(2)$
Cl2	$0.0387(3)$	$0.0282(2)$	$0.0402(3)$	$0.00715(19)$	$0.0087(2)$	$0.0093(2)$
Sn1	$0.03107(11)$	$0.02496(11)$	$0.03074(11)$	$-0.00012(7)$	$0.00626(7)$	$0.00940(8)$
C2	$0.0604(18)$	$0.078(2)$	$0.0417(14)$	$-0.0007(16)$	$0.0195(13)$	$0.0098(14)$
C3	$0.0387(12)$	$0.0550(15)$	$0.0478(14)$	$0.0036(11)$	$0.0083(10)$	$0.0151(12)$
N1	$0.0382(10)$	$0.0390(10)$	$0.0351(9)$	$0.0007(8)$	$0.0029(7)$	$0.0120(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1—Sn1
2.116 (2)

C2-H2A
0.96

supplementary materials

C1-H1A	0.96
C1-H1B	0.96
C1-H1C	0.96
C11-Sn1	2.6441 (7)
C12-Sn1	2.6297 (7)
Sn1-C1 ${ }^{\text {i }}$	2.116 (2)
$\mathrm{Sn} 1-\mathrm{Cl2}{ }^{\text {i }}$	2.6297 (7)
$\mathrm{Sn} 1-\mathrm{Cl1}{ }^{\text {i }}$	2.6441 (7)
C2-N1	1.468 (4)
$\mathrm{Sn} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
Sn1-C1-H1B	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
Sn1-C1-H1C	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1B-C1-H1C	109.5
$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{C} 1$	180.00 (13)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Cl} 2^{\text {i }}$	90.42 (7)
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl2}{ }^{\text {i }}$	89.58 (7)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Cl} 2$	89.58 (7)
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	90.42 (7)
$\mathrm{Cl} 2{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Cl} 2$	180
$\mathrm{C} 1{ }^{\text {i }} \mathrm{Sn} 1-\mathrm{Cl1}{ }^{\text {i }}$	90.43 (8)
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl1} 1^{\text {i }}$	89.57 (8)
$\mathrm{Cl2}-\mathrm{Sn} 1-\mathrm{Cl1}{ }^{\text {i }}$	89.90 (2)
$\mathrm{Cl2}-\mathrm{Sn} 1-\mathrm{Cl1}{ }^{\text {i }}$	90.10 (2)
C1 ${ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Cl1}$	89.57 (8)
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl} 1$	90.43 (8)
$\mathrm{Cl} 2{ }^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Cl} 1$	90.10 (2)
Cl2-Sn1-Cl1	89.90 (2)

C2-H2B	0.96
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.96
$\mathrm{C} 3-\mathrm{N} 1$	1.475 (3)
C3-H3A	0.96
C3-H3B	0.96
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.96
N1-H1D	0.9
N1-H1E	0.9
$\mathrm{Cl1} 1^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Cl1}$	180
N1-C2-H2A	109.5
N1-C2-H2B	109.5
H2A-C2-H2B	109.5
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
N1-C3-H3A	109.5
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
H3A-C3-H3B	109.5
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
H3B-C3-H3C	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	112.7 (2)
C2-N1-H1D	109.1
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{D}$	109.1
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{E}$	109.1
C3-N1-H1E	109.1
H1D-N1-H1E	107.8

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{E} \cdots \mathrm{Cl} 1$	0.9	2.31	$3.201(2)$	169
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{D} \cdots \mathrm{Cl2}{ }^{\mathrm{ii}}$	0.9	2.37	$3.229(2)$	160

Fig. 1

